Concepts students should know before entering 6 ${ }^{\text {th }}$ Grade Transition/Math 6:
Students should be advanced at these concepts:

Order of Operation
Directions: Simplify the following. Remember your PEMDAS rules!

PEMDAS Rules

Evaluate the problem in the following order:

1) P - Parentheses
2) E - Exponents (Powers and Square Roots)
3) MD - Multiplication and Division (Left to Right)
4) AS - Addition and Subtraction (Left to Right)

You can remember the order by saying :
Please Excuse My Dear Aunt Sally

a	x	u	i	d	u
r	p	1	v	d	b
e	0	t	i	i	t
n	n	i	s	t	r
t	e	p	i	i	a
h	n	1	0	0	c
e	t	i	n	n	t
s	s	c			i
e		a			0
s		t			n
		i			
		0			
		n			

$\begin{gathered} 13 \times 13-4+10 \\ 169-4+10 \\ v \\ 165+10 \\ (175) \end{gathered}$	1. $\begin{gathered} 18-11+19 \times 3 \\ 18-11+57 \\ 7+57 \\ 64 \end{gathered}$
2. $\begin{gathered} 24 \div 8 \times 11+3 \\ 3 \times 11+3 \\ 33+3 \\ 36 \end{gathered}$	3. $\begin{gathered} 2+11 \times 17-12 \\ 2+187-12 \\ 189-12 \\ 177 \end{gathered}$
4. $\begin{gathered} 9+4 \times 12+15 \\ 9+48+15 \\ 57+15 \\ 72 \end{gathered}$	$\text { 5. } \begin{gathered} 16 \times 3-2+3 \\ 48-2+3 \\ 46+3 \\ 49 \end{gathered}$
6. $\begin{gathered} 16+9-10 \div 5 \\ 16+9-2 \\ 25-2 \\ 23 \end{gathered}$	7. $\begin{gathered} 16 \div 2+19-16 \\ 8+19-16 \\ 27-16 \\ 11 \end{gathered}$

Mixed Numbers \& Improper Fractions
Directions: Convert the following improper fractions to mixed numbers. Write your answer on the line next to each problem.

1) $\frac{9}{4}=2 \frac{1}{4}$	6) $\frac{\mathbf{1 1}}{\mathbf{5}}=2 \frac{1}{5}$	11) $\frac{\mathbf{7 1}}{\mathbf{1 0}}=\underline{7 \frac{1}{10}}$
2) $\frac{\mathbf{8 2}}{\mathbf{9}}=9 \frac{1}{9}$	7) $\frac{\mathbf{6 1}}{\mathbf{6}}=10 \frac{1}{6}$	12) $\frac{\mathbf{2 9}}{\mathbf{7}}=4 \frac{1}{7}$
3) $\frac{\mathbf{3 1}}{\mathbf{5}}=6 \frac{1}{5}$	8) $\frac{7}{3}=2 \frac{1}{3}$	13) $\frac{55}{\mathbf{6}}=9 \frac{1}{6}$
4) $\frac{\mathbf{1 3}}{\mathbf{3}}=4 \frac{1}{3}$	9) $\frac{\mathbf{5 0}}{\mathbf{7}}=$ \qquad	14) $\frac{\mathbf{2 1}}{\mathbf{1 0}}=2 \frac{1}{10}$
5) $\frac{\mathbf{2 9}}{\mathbf{7}}=4 \frac{1}{7}$	10) $\frac{\mathbf{1 7}}{\mathbf{4}}=4 \frac{1}{4}$	15) $\frac{\mathbf{2 5}}{\mathbf{4}}=6 \frac{1}{4}$

Directions: Convert the following improper fractions to mixed numbers. Write your answer on the line next to each problem.

1) $5 \frac{1}{3}=\frac{16}{3}$	6) $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}={ }_{-}^{\frac{5}{2}}$	11) $\mathbf{9} \frac{\mathbf{1}}{\mathbf{5}}={ }_{-} \frac{46}{5}$
2) $2 \frac{\mathbf{1}}{8}=\frac{17}{8}$	7) $\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}}={ }_{-}^{4}{ }_{-}$	12) $6 \frac{1}{2}={ }_{-}^{2}$
3) $\mathbf{3} \frac{\mathbf{1}}{\mathbf{4}}=\frac{13}{4}_{\text {_ }}$	8) $6 \frac{1}{10}=\frac{61}{10}_{\text {_ }}$	13) $5 \frac{4}{9}=-\frac{49}{9}$
4) $\mathbf{3} \frac{\mathbf{2}}{\mathbf{9}}=\frac{29}{9}_{-}$	9) $5 \frac{\mathbf{7}}{\mathbf{1 0}}={ }_{-} \frac{57}{10}$	14) $9 \frac{2}{3}=-\frac{29}{3}$
5) $\mathbf{9} \frac{\mathbf{3}}{\mathbf{8}}={ }_{-} \frac{75}{8}-$	10) $9 \frac{1}{2}=-\frac{19}{2}$ -	15) $\mathbf{2} \frac{\mathbf{3}}{8}=-\frac{19}{8}$

Directions: Complete the following problems. NO CALCULATOR!SHOW ALL WORK!!

1. $\begin{gathered} 619 \\ 5 \longdiv { 3 , 0 9 5 } \\ \frac{-30}{09} \\ -\frac{5}{45} \\ \frac{-45}{0} \end{gathered}$	2. $\begin{array}{r} 0510 \\ 3 \longdiv { 1 , 5 3 0 } \\ -15 \downarrow 1 \\ 03 \\ -\quad 3 \downarrow \\ 000 \\ -\quad 0 \\ \hline 0 \end{array}$	3. $\begin{array}{r} 0503 \\ 1 2 \longdiv { 6 , 0 3 6 } \\ -60 \downarrow \\ -\quad \mathrm{o} \\ -\quad 0 \downarrow \\ \hline 36 \\ -36 \\ \hline 0 \end{array}$
4. $\begin{array}{r} 0509 \\ 9 \longdiv { 4 , 5 8 1 } \\ -45 \downarrow \\ 08 \\ -\quad 0 \downarrow \\ \hline 81 \\ -81 \\ \hline 0 \end{array}$	5. $\begin{array}{r} 0775 \\ 7 \longdiv { 5 , 4 2 5 } \\ -49 \downarrow \\ 52 \\ -49 \downarrow \\ 35 \\ -35 \\ 0 \end{array}$	6. $\begin{array}{r} 0928 \\ 8 \longdiv { 7 , 4 2 4 } \\ -72 \downarrow \\ 22 \\ -16 \downarrow \\ 64 \\ -64 \\ 0 \end{array}$
7. $\begin{array}{r} 0808 \\ 3 \longdiv { 2 , 4 2 4 } \\ -24 \downarrow \\ 02 \\ -\quad 0 \downarrow \\ 24 \\ -24 \\ 0 \end{array}$	8. $\begin{array}{r} 0208 \\ 1 1 \longdiv { 2 , 2 8 8 } \\ -22 \downarrow \\ 08 \\ -\quad 0 \downarrow \\ \hline 88 \\ -88 \\ \hline 0 \end{array}$	9. $\begin{array}{r} 0907 \\ 6 \longdiv { 5 , 4 4 2 } \\ -54 \downarrow \\ 04 \\ -\quad 0 \downarrow \\ -42 \\ -42 \\ -42 \end{array}$
10. $\begin{array}{r} 0707 \\ 8 \lcm{5,656} \\ -56 \downarrow \\ 05 \\ -\quad 0 \downarrow \\ 56 \\ -56 \\ \hline 0 \end{array}$	11 $\begin{array}{r} 0520 \\ 3 \longdiv { 1 , 5 6 0 } \\ -15 \downarrow \\ 06 \\ -\quad 6 \downarrow \\ 000 \\ -00 \\ \hline 0 \end{array}$	12. $\begin{array}{r} 0801 \\ 4 \longdiv { 3 , 2 0 4 } \\ -32 \downarrow \\ 0 \quad 0 \\ -\quad 0 \downarrow \\ 04 \\ -04 \\ \hline 0 \end{array}$

Coordinate System
Directions: Write the point that is located at each ordered pair.

1) $(6,2) \quad \mathrm{O}$
2) $(6,8) \quad \mathrm{T}$
3) $(10,1) \xrightarrow{P}$
4) $(4,5) \xrightarrow{E}$

5) $(1,6) \quad \mathrm{J}$
6) $(2,1) \quad \mathrm{U}$
7) $(7,4) \quad \mathrm{I}$
8) $(5,7) \quad Q$
9) $(9,7) \xrightarrow{S}$
10) $(2,3) \xrightarrow{Y}$

(1) 2

Directions: Write the ordered pair for each point.

11) $\mathrm{N}(.10,3)$
12) $X(.4,4$.
13) $\mathrm{B}(.6,2$.)
14) L(. 8,5 .)
15) $Z(.5,5$.
16) $P(10,6$)
17) $\mathrm{D}(.2,8$.)
18) M (. $7,9$.
19) J(. 2,3 .)
20) $\mathrm{H}(-3,6)$

Directions: Express each fraction as a percent.

$\frac{38}{100}=\ldots 38 \%$	$\frac{92}{100}=\ldots 92 \%$	$\frac{7}{100}=\ldots \quad 7$
$\frac{19}{100}=\ldots 19 \%$	$\frac{4}{10}=\ldots 40 \%$	$\frac{6}{10}=\square 60 \%$

Directions: Express each decimal as a percent.

$\begin{aligned} 0.15 & =\frac{(15}{100} \\ & =\quad 15 \end{aligned}$	$\begin{aligned} 0.28 & =\frac{28}{100} \\ & = \end{aligned}$	$0.07=-\quad 7$
$0.01=\ldots$	$0.08=\underline{8} \%$	$0.5=50$
$0.9=\ldots 90 \%$	$0.8=80$	

Directions: Express each percent as a fraction with a denominator of 100.

$53 \%=\frac{(55}{100}$		
$31 \%=\frac{31}{100}$	$7 \%=\frac{7}{100}$	$13 \%=\frac{13}{100}$
	$5 \%=\frac{5}{100}$	$79 \%=\frac{79}{100}$

Directions: Evaluate the following. You may use a calculator,

$(3)^{3}=(3)(3)(3)=(27)$	$(1)^{3}=(1)(1)(1)=1$	$(4)^{3}=(4)(4)(4)=64$
$(5)^{2}=(5)(5)=25$	$(2)^{3}={ }_{(2)(2)(2)=8}$	$(11)^{2}=(11)(11)=121$
$(7)^{2}=(7)(7)=49$	$(6)^{3}=(6)(6)(6)=216$	$(9)^{2}=(9)(9)=81$

Adding \& Subtracting Decimals
Directions:Solve the following. DO NOT USE A CALCULATOR!!

Finding Area \& Perimeter of Rectangles

Directions: Find the perimeter \& area of the shapes below. All work must be shown!! Please follow the example problems for work we expect.

Coordinate Plane

	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=4(5) \\ & \mathrm{A}=20 \mathrm{u}^{2} \\ & \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(4)+2(5) \\ & \mathrm{P}=8+10 \\ & \mathrm{P}=18 \mathrm{u} \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{s}^{2} \\ & \mathrm{~A}=4^{2} \\ & \mathrm{~A}=16 \mathrm{u}^{2} \\ & \mathrm{P}=4 \mathrm{~S} \\ & \mathrm{P}=4(4) \\ & \mathrm{P}=16 \mathrm{u} \end{aligned}$		$\begin{aligned} & A=b h \\ & A=3(10) \\ & A=30 u^{2} \\ & P=2 b+2 h \\ & P=2(3)+2(10) \\ & \mathrm{P}=6+20 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$
$4 \square^{2}$	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=2(4) \\ & \mathrm{A}=8 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(2)+2(4) \\ & \mathrm{P}=4+8 \\ & \mathrm{P}=12 \mathrm{u} \end{aligned}$	$3 \square^{2}$	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=3(2) \\ & \mathrm{A}=6 \mathrm{u}^{2} \\ & \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(3)+2(2) \\ & \mathrm{P}=6+4 \\ & \mathrm{P}=10 \mathrm{u} \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=7(9) \\ & \mathrm{A}=63 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(7)+2(9) \\ & \mathrm{P}=14+18 \\ & \mathrm{P}=32 \mathrm{u} \end{aligned}$
	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=9(10) \\ & \mathrm{A}=90 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(9)+2(10) \\ & \mathrm{P}=18+20 \\ & \mathrm{P}=38 \mathrm{u} \end{aligned}$		$\begin{aligned} & A=b h \\ & A=8(10) \\ & A=80 u^{2} \\ & P=2 b+2 h \\ & P=2(8)+2(10) \\ & P=16+20 \\ & P=36 u \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{S}^{2} \\ & \mathrm{~A}=5^{2} \\ & \mathrm{~A}=25 \mathrm{u}^{2} \\ & \\ & \mathrm{P}=4 \mathrm{~S} \\ & \mathrm{P}=4(5) \\ & \mathrm{P}=20 \mathrm{u} \end{aligned}$
	$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=8(5) \\ & \mathrm{A}=40 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(8)+2(5) \\ & \mathrm{P}=16+10 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$		$\begin{aligned} & A=b h \\ & A=4(9) \\ & A=36 u^{2} \\ & P=2 b+2 h \\ & P=2(4)+2(9) \\ & P=8+18 \\ & P=26 u \end{aligned}$		$\begin{aligned} & \mathrm{A}=\mathrm{bh} \\ & \mathrm{~A}=6(7) \\ & \mathrm{A}=42 \mathrm{u}^{2} \\ & \mathrm{P}=2 \mathrm{~b}+2 \mathrm{~h} \\ & \mathrm{P}=2(6)+2(7) \\ & \mathrm{P}=12+14 \\ & \mathrm{P}=26 \mathrm{u} \end{aligned}$

Directions: Write the ordered pair for each point.

11) $Q(3,-2)$
12) $s(-3,1$,
13) $D(-5,3$
14) ᄂ $\{-3,-4$,
15) $G(1,4\}$
16) $Z\left(\frac{1}{-5}\right)$
17) $\times(5,-5$
18) $A(-1,4,4$
19) 」 (-4, -2 $)$
20) $F(5,3)$

Simplifying Fractions

Directions: Simplify the following fractions.

$\frac{4}{6}=\frac{2}{3}$	$\frac{2}{10}=\frac{1}{5}$	$\frac{21}{28}=\frac{3}{4}$	$\frac{10}{15}=\frac{2}{3}$	$\frac{6}{18}=\frac{1}{3}$
$\frac{4}{8}=\frac{1}{2}$	$\frac{16}{20}=\frac{4}{5}$	$\frac{7}{14}=\frac{1}{2}$	$\frac{6}{15}=\frac{2}{5}$	$\frac{12}{20}=\frac{3}{5}$

Adding Fractions

Directions: Solve the following problems. NO CALCULATOR! Put your answers in simplified form.

$\begin{aligned} & \text { 1. } \frac{4}{7}+\frac{10}{21}= \\ & \frac{12}{21}+\frac{10}{21}=\frac{22}{21}=1 \frac{1}{21} \end{aligned}$	$\begin{aligned} & 2 \cdot \frac{8}{9}+\frac{1}{3}= \\ & \begin{aligned} \frac{24}{27}+\frac{9}{27}= & \frac{33}{27}=1 \frac{6}{27} \\ & =1 \frac{2}{9} \end{aligned} \end{aligned}$	$\begin{aligned} & 3 \cdot \frac{11}{6}+\frac{4}{9}= \\ & \frac{33}{18}+\frac{8}{18}=\frac{41}{18}=2 \frac{5}{18} \end{aligned}$
$\begin{aligned} & 4 \cdot \frac{6}{12}+\frac{12}{4}= \\ & \frac{6}{12}+3=3 \frac{6}{12}=3 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5 \cdot \frac{4}{5}-\frac{7}{10}= \\ & \frac{8}{10}-\frac{7}{10}=\frac{1}{10} \end{aligned}$	$\begin{aligned} & 6 \cdot \frac{8}{11}+\frac{12}{5}= \\ & \frac{40}{55}+\frac{132}{55}=\frac{172}{55}=3 \frac{7}{55} \end{aligned}$
$\begin{aligned} & 7 \cdot \frac{10}{3}-\frac{2}{12}= \\ & \frac{20}{6}-\frac{1}{6}=\frac{19}{6}=3 \frac{1}{6} \end{aligned}$	$\begin{aligned} & 8 \cdot \frac{11}{6}+\frac{1}{10}= \\ & \begin{aligned} \frac{55}{30}+\frac{3}{30} & =\frac{58}{30}=1 \frac{28}{30} \\ & =1 \frac{14}{15} \end{aligned} \end{aligned}$	$\begin{aligned} & 9 \cdot \frac{3}{5}-\frac{6}{11}= \\ & \frac{33}{55}-\frac{30}{55}=\frac{3}{55} \end{aligned}$

1. Oliver played 2 rounds of a trivia game and scored 982 points. If he gained the same number of points each round, how many points did he score per round?

$$
\begin{aligned}
& 2 \text { rounds } \rightarrow 982 \text { points } \\
& 1 \text { round } \rightarrow 982 \div 2=491 \\
& 491 \text { points per round }
\end{aligned}
$$

2. Roger has 365 baseball cards in 5 binders. If each binder has the same number of cards, how many cards are in each binder?

$$
\begin{aligned}
& 5 \text { binders } \rightarrow 365 \text { cards } \\
& 1 \text { binder } \rightarrow 365 \div 5=73 \\
& 73 \text { cards per binder }
\end{aligned}
$$

4. An ice machine had 480 ice cubes in it. If you were filling up 8 ice chests and each chest got the same number of cubes, how many ice cubes would each chest get?

$$
480 \div 8=60
$$

60 ice cubes per ice chest
6. There are 545 students in a school. If the school has 5 grades and each grade had the same number of students, how many students were in each grade?

$$
\begin{aligned}
& 5 \text { grades } \rightarrow 545 \text { students } \\
& 1 \text { grade } \rightarrow 545 \div 5=109 \\
& \mathbf{1 0 9} \text { students per grades }
\end{aligned}
$$

Directions: Solve the following. NO CALCULATORS!! Simplify your answer.

Example: $\frac{2}{3} \times 5=$?

make the whole number a fraction
$\mathbf{5}$ multiply the (numerators)
$\mathbf{2 \times 5 = 1 0} \begin{gathered}\text { multiply the } \\ \text { bottom numbers } \\ \text { (denominators) }\end{gathered} \quad \mathbf{3 \times 1 = 3} \begin{gathered}\text { write your } \\ \text { result }\end{gathered}$

Order of Operation

1. $\begin{aligned} & 3 \times \frac{2}{9}= \\ & \quad \frac{13}{1} \times \frac{2}{93}=\frac{2}{3} \end{aligned}$	$\begin{aligned} & 4 \times \frac{3}{15}= \\ & \\ & \frac{4}{1} \times \frac{31}{155}=\frac{4}{5} \end{aligned}$	$\begin{aligned} & 2 \times \frac{9}{19}=3 \\ & \quad \frac{2}{1} \times \frac{9}{19}=\frac{18}{19} \end{aligned}$
$\begin{aligned} & 6 \times \frac{3}{24}=4 \\ & \frac{16}{1} \times \frac{3}{244}=\frac{3}{4} \end{aligned}$	$\begin{array}{r} 2 \times \frac{2}{5}= \\ \frac{2}{1} \times \frac{2}{5}=\frac{4}{5} \end{array}$	$\begin{aligned} & 1 \times \frac{5}{5}= \\ & \frac{1}{1} \times \frac{51}{51}=\frac{1}{1}=1 \end{aligned}$
$\begin{aligned} & 5 \times \frac{1}{7}= \\ & \\ & \frac{5}{1} \times \frac{1}{7}=\frac{5}{7} \end{aligned}$	$\begin{aligned} & 10 \times \frac{1}{16}=8 \\ & \frac{510}{1} \times \frac{1}{168}=\frac{5}{8} \end{aligned}$	$\begin{aligned} & \text { 9. } \quad 3 \times \frac{4}{9}= \\ & \frac{13}{1} \times \frac{4}{93}=\frac{4}{3}=1 \frac{1}{3} \end{aligned}$
Example: $\frac{4}{5} \times \frac{2}{8}=$? $\begin{gathered} \text { multiply } \\ \text { numerators } \\ \text { multiply } \\ \text { denominators } \end{gathered} \frac{4 \times 2}{5 \times 8}=\frac{8}{40}=\frac{1}{5}$	$\begin{array}{r} \frac{3}{6} \times \frac{3}{2}=10 \\ \frac{13}{26} \times \frac{3}{2}=\frac{3}{4} \end{array}$	11. $\begin{aligned} & \frac{20}{40} \times \frac{2}{2}= \\ & \frac{1 z 0}{240} \times \frac{z 1}{z 1}=\frac{1}{2} \end{aligned}$
$\begin{aligned} & \frac{4}{7} \times \frac{5}{8}= \\ & \frac{14}{7} \times \frac{5}{82}=\frac{5}{14} \end{aligned}$	$\begin{aligned} & \frac{2}{6} \times \frac{6}{2}= \\ & \frac{1 z}{16} \times \frac{61}{z 1}=\frac{1}{1}=1 \end{aligned}$	$\begin{aligned} & \frac{5}{10} \times \frac{2}{1}=14 \\ & \frac{15}{1210} \times \frac{z 1}{1}=\frac{1}{1}=1 \end{aligned}$
$\begin{aligned} & \frac{5}{25} \times \frac{4}{1}=15 \\ & \frac{15}{525} \times \frac{4}{1}=\frac{4}{5} \end{aligned}$	$\begin{aligned} & \frac{15}{17} \times \frac{6}{6}= \\ & \frac{15}{17} \times \frac{61}{61}=\frac{15}{17} \end{aligned}$	$\begin{aligned} & \frac{9}{9} \times \frac{1}{1}= \\ & \frac{19}{19} \times \frac{1}{1}=\frac{1}{1}=1 \end{aligned}$

$\begin{gather*} 8 \div 4 \times 19+10-1 \\ \underbrace{2 \times 19+10-1}_{38+10-1} \\ 48-1 \end{gather*}$	$\text { 1. } \begin{gathered} 2 \times 17+13 \times 3-1 \\ 34+13 \times 3-1 \\ 34+39-1 \\ 73-1 \\ 72 \end{gathered}$
$\text { 2. } 4-1+16 \times 11+8$	$\text { 3. } 4-1+17 \times 18 \div 9$
$\text { 4. } \begin{gathered} 18+14 \div 2 \times 18 \times 16 \\ 18+7 \times 18 \times 16 \\ 18+126 \times 16 \\ 18+2016 \\ 2034 \end{gathered}$	$\text { 5. } \begin{gathered} 17 \times 14+14-6 \times 10 \\ 238+14-6 \times 10 \\ 238+14-60 \\ 252-60 \\ 192 \end{gathered}$
$\text { 6. } \begin{gathered} 17 \times 10 \div 2-1 \times 12 \\ 170 \div 2-1 \times 12 \\ 85-1 \times 12 \\ 85-12 \\ 73 \end{gathered}$	$\text { 7. } \begin{gathered} 15-13+14 \times 9+19 \\ 15-13+126+19 \\ 2+126+19 \\ 128+19 \\ 147 \end{gathered}$
$\text { 8. } \begin{gathered} 9 \times 5-1+8+15 \\ 45-1+8+15 \\ 44+8+15 \\ 52+15 \\ 67 \end{gathered}$	$\text { 9. } \begin{gathered} 18 \times 11 \times 12 \div 3-2 \\ 198 \times 12 \div 3-2 \\ 2376 \div 3-2 \\ 792-2 \\ 790 \end{gathered}$

Finding Area of Triangles

Directions: Find the area of the triangles below. All work must be shown. Please follow the example problem for work we expect to see.

$\mathrm{A}=\frac{1}{2} \mathrm{bh}$ $\mathrm{A}=\frac{1}{2}(17)(10)$ $\mathrm{A}=85 \mathrm{in}^{2}$	$A=\frac{1}{2}(15)(19)$ $\mathrm{A}=142.5 \mathrm{~mm}^{2}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(17)(13) \\ & A=110.5 \mathrm{~mm}^{2} \end{aligned}$
$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(2)(9) \\ & A=9 \mathrm{~km}^{2} \end{aligned}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(77)(24) \\ & A=924 \mathrm{~mm}^{2} \end{aligned}$	$\mathrm{A}=\frac{1}{2} \mathrm{bh}$ $A=\frac{1}{2}(19)(11)$ $\mathrm{A}=104.5 \mathrm{~m}^{2}$
$\mathrm{A}=3,116 \mathrm{ft}^{2}$	$\begin{aligned} & A=\frac{1}{2} b h \\ & A=\frac{1}{2}(12)(13) \\ & A=78 \mathrm{~km}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}=\frac{1}{2} \mathrm{bh} \\ & \mathrm{~A}=\frac{1}{2}(100)(81) \\ & \mathrm{A}=4,050 \mathrm{in}^{2} \end{aligned}$

Multiplying Decimals

Directions: Multiply the following.

$\sqrt{13} \times 100=130$	$6.8 \times 100=680$	$\sqrt{4.196} \times 100=419.6$
100×74.3 n $=7,430$	$46.8 \times 100=4,680$	$4.68 \times 100=468$
$9.1 \times 100=910$	$3.28 \times 100=328$	$5.095 \times 100=509.5$

Directions: Multiply the following.

rin $_{1.8} \times 1,000=1,800$	$2.1^{m} \times 1,000=2,100$	$9.097 \times 1,000=9,097$
$27.4 \times 1,000=27,400$	$1,000 \times 10.81=10,810$	$27.4 \times 1,000=27,400$

Directions: Complete.

| $1.2=0.12 \times \underline{10}$ |
| :--- | :--- | :--- |
$=0.012 \times \underline{100}$	\quad	360	$=36 \times \underline{10}$	
	$=3.6 \times \underline{100}$			
	$=0.36 \times \underline{1,000}$	\quad	438	$=\frac{43.8}{} \times 10$
---:	:---			
	$=\frac{4.38}{0.438} \times 100$			

Conversions

Directions: Convert each measurement.

Convert 25 centimeters to millimeters. Convert $200 \Varangle$ to dollars.

$$
25 \times 10=250 \mathrm{~mm} \quad 200 \div 100=\$ 2
$$

1. 40 cm	2. 15 cm	3. 30 mm	4. 100 mm
400 mm	150 mm	3 cm	10 cm
5. $\$ 35$	6. \$600	7. 450 ¢	8. 150 ¢
3,500 $¢$	$\underline{60,000}$ ¢	\$ 4.50	\$ 1.50

Directions: Solve each of the following problems. SHOW ALL WORK!

1. Ned bought 331 pieces of candy to give to 35 of his friends. If he wants to give each friend the same amount, how many pieces would he have left over? $\begin{aligned} & 35 \frac{9}{331}^{\text {R } 16} \\ & \frac{-315}{16} \end{aligned}$ 9 pieces with 16 leftover	2. An industrial machine can make 245 crayons a day. If each box of crayons has 20 crayons in it, how many full boxes does the machine make a day? $\begin{gathered} 12 \text { R } 5 \\ 20245 \\ \frac{-20}{45} \\ \frac{-40}{5} \end{gathered}$ 12 full boxes
3. A box of computer paper has 1004 sheets left in it. If each printer in a computer lab needed 39 sheets how many printers would the box fill up? $\begin{gathered} 25 \text { R } 29 \\ 39 \frac{-78}{1004} \downarrow \\ \frac{-195}{29} \end{gathered}$ 25 printers	4. Robin had 771 pennies. She wanted to place the pennies into 37 stacks, with the same amount in each stack. How many more pennies would she need so all the stacks would be equal? $\begin{gathered} \frac{20}{} \text { R } 31 \\ 37 \mid 771 \\ \frac{-74}{31} \downarrow \\ \frac{-\quad 0}{31} \end{gathered}$ 6 more pennies
5. A builder needed to buy 960 nails for his latest project. If the nails he needs come in boxes of 47 , how many boxes will he need to buy? $\begin{aligned} & \frac{20}{47 \mid 960} 20 \\ & \frac{-94}{20} \downarrow \\ & \frac{-0}{20} \\ & 20 \text { boxes } \end{aligned}$	6. Sarah received 541 dollars for her birthday. Later she found some toys that cost 15 dollars each. How much money would she have left if she bought as many as she could? $\begin{aligned} & 15 \begin{array}{c} 36 \\ 1541 \\ \frac{-45}{91} \\ \frac{-90}{1} \end{array} \\ & \$ 1.00 \end{aligned}$

Adding Fractions
Directions: Solve the following. NO CALCULATORS!! Show all work and simplify your answer!
Reading a Line Graph

	$\begin{array}{r} 3 \frac{1}{4}+4 \frac{1}{2}= \\ 3 \frac{1}{4}+4 \frac{2}{4}=7 \frac{3}{4} \end{array}$
$\begin{aligned} & 2 \frac{5}{6}+5 \frac{4}{7}=2 \\ & 2 \frac{35}{42}+5 \frac{24}{42}=7 \frac{59}{42}=8 \frac{17}{42} \end{aligned}$	$\begin{aligned} & 2 \frac{3}{5}+6 \frac{1}{4}=3 \\ & \quad 2 \frac{12}{20}+6 \frac{5}{20}=8 \frac{17}{20} \end{aligned}$
$\begin{array}{r} 4 \frac{2}{3}+4 \frac{1}{6}=4 \\ 4 \frac{4}{6}+4 \frac{1}{6}=8 \frac{5}{6} \end{array}$	$\begin{aligned} & 3 \frac{1}{2}+3 \frac{1}{5}=5 \\ & 3 \frac{5}{10}+3 \frac{2}{10}=6 \frac{7}{10} \end{aligned}$
6. $23 \frac{1}{2}-18 \frac{1}{6}=$ $23 \frac{3}{6}-18 \frac{1}{6}=5 \frac{2}{6}=5 \frac{1}{3}$	$\begin{aligned} & 19 \frac{1}{2}-4 \frac{4}{5}= \\ & \begin{array}{c} 19 \frac{5}{10}-4 \frac{8}{10}=18 \frac{15}{10}-4 \frac{8}{10} \\ =14 \frac{7}{10} \end{array} \end{aligned}$

Directions: The graph below shows the number of fish caught in a day. Use the graph to answer the questions.

Fishing Trip Results

Time

1) What time were the most fish caught? 11 AM
2) What time were the fewest fish caught? 10 AM
3) From 11 A.M. to 12 P.M. did the number of fish caught increase or decrease?

Decrease
4) How many fish were caught at 9 A.M.? 8 fish
5) How many fish were caught at 10 A.M.? 4 fish
6) Were more fish caught at 10 A.M. or 11 A.M.? 11 AM
7) Were fewer fish caught at 9 A.M. or 10 A.M.? 10 AM
8) What is the difference in the number of fish caught at 9 A.M. and the number caught at 12 P.M.? 1 fish
9) What is the total number of fish caught? 39 fish
10)Were there at least 5 caught at 8 A.M.? Yes

Squares \& Cubes

Directions: Evaluate the following. You may use a calculator.

$(10)^{3}=(10)(10)(10)=1,000$	$(12)^{2}=$	144
$\begin{array}{ll} \\ (2)^{2}= & \begin{array}{l} 1 . \\ (2)(2)=4 \end{array} \end{array}$	$(9)^{3}=\begin{aligned} & 2 . \\ & (9)(9)(9)=729 \end{aligned}$	$(4)^{3} \stackrel{3}{ }=(4)(4)(4)=64$
$(4)^{2}=\stackrel{4}{(4)(4)=16}$	$(7)^{2}=\stackrel{\Sigma}{(7)(7)}=49$	$\begin{aligned} & \\ &(12)^{3}= 6 \\ &=(12)(12)(12)=1728 \end{aligned}$
$(5)^{3}=\begin{aligned} & 7 \\ & (5)(5)(5)=125 \end{aligned}$	$(6)^{2}=\stackrel{\sim}{(6)(6) ~=~} 36$	$\begin{aligned} & \\ & (8)^{2}=\begin{array}{l} \mathrm{o} \\ =(8)(8)=64 \end{array} \end{aligned}$

Directions: Determine the prime factorization of the following numbers.

Example

Order of Operation

Directions: Simplify the following. Remember your PEMDAS rules!

$\begin{aligned} & 7 \times(5 \times 10+4)-7 \\ & 7 \times(\underbrace{50+4})-7 \\ & \underbrace{778-7-7} \\ & 371 \end{aligned}$	$\text { 1. } \begin{gathered} (8+23-3) \div(13-6) \\ (31-3) \div 7 \\ 28 \div 7 \\ 4 \end{gathered}$
$\text { 2. } \begin{gathered} (15-3) \times(10+3)-4 \\ 12 \times 13-4 \\ 156-4 \\ 152 \end{gathered}$	$\text { 3. } \begin{gathered} (16+4)+(11+15 \div 5) \\ 20+(11+3) \\ 20+14 \\ 34 \end{gathered}$
$\text { 4. } \begin{gathered} (14+29-3) \div 20-2 \\ (43-3) \div 20-2 \\ 40 \div 20-2 \\ 2-2 \end{gathered}$	$\begin{gathered} 5 \cdot(15+18-3) \div(15 \times 2) \\ (33-3) \div 30 \\ 30 \div 30 \\ 1 \end{gathered}$
$\text { 6. } \begin{gathered} (8+4)+(10+14 \div 7) \\ 12+(10+2) \\ 12+12 \\ 24 \end{gathered}$	$\text { 7. } \begin{gathered} (12+22-2)+16-2 \\ (34-4)+16-2 \\ 30+16-2 \\ 46-2 \\ 44 \end{gathered}$

